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ELEMENTARY INTRODUCTION Planck mass, length and time in 4 dimensions

Planck mass, length and time in 4 dimensions

3 fundamental constants : G = 6, 67× 10−11 m3

kg.s2 , c = 3× 108 m
s

, ~ = 1.06× 10−34 kg.m2

s

Natural (Planck) units are unique combinations of these fundamental constants :

Planck length lP =
√

G~
c3

= 1.62× 10−33cm

Planck time tP =
√

~G
c5

= 5.4× 10−44s

Planck mass M4 =
√

~c
G

= 2.18× 10−5g

Scales at which quantum gravity effects should be important :

at distances ∼ lP , i.e. at very high energies M4c2 (since lP ∼ (M4)−1)
experimentally inaccessible

at times ∼ tP , i.e. the universe at very early times

Note that

M2
4 ∼

1
G4

, Planck mass gives strength of gravity

M4 � mp = 1.67× 10−24g, ∼ 19 orders → hierarchy problem
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ELEMENTARY INTRODUCTION Energy scales and their hierarchy

Energy scales and their hierarchy in 4 dimensional world

me = 5.1× 10−4 GeV = 4.0× 10−11cm

mµ = 1.0× 10−1 GeV

mτ = 1.8 GeV

mHiggs = 246 GeV = 8.0× 10−17cm (EW symmetry breaking scale)

mLHC = 1 TeV = 2.0× 10−17cm

M4 = 1.2× 1019 GeV = 1.6× 10−33cm (Planck scale (huge))

Hierarchy problem : why there is 16 orders of magnitude between EW scale and
Planck scale

Since G4 = M−2
4 why is gravity so weak?

Since M4 is a ”natural” mass scale why masses of elementary particles are so small

D-dim gravity : possible solution?
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ELEMENTARY INTRODUCTION Classical gravity in D dimensions

Classical gravity in D dimensions

Newtonian gravity in D spacetime dimensions is given by postulating the Poisson equation as
valid in all dimensions

∆φD = 4πGD · ρ

Since ∆( 1
r(D−3) ) = 4πδ(D−1), gravitational potential of a point mass is for D ≥ 4

φD ∼
1

r(D−3)

D = 4→ φ4 ∼ 1
r

and F4 ∼ 1
r2

D = 5→ φ5 ∼ 1
r2 and F5 ∼ 1

r3

D = 6→ φ6 ∼ 1
r3 and F6 ∼ 1

r4

etc.

Notes

In D-dimensional theory Planck length, time and mass are based on GD, ~, c

l
(D−2)
PD

= ~·GD
c3

[GD] = L(D−4) · [G4] (since [∆φD] is the same in all dimensions)
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ELEMENTARY INTRODUCTION Compactification and effective theories

Compactification and effective theories

Kaluza-Klein (1921-26) 5 = 4 + 1

String theories are defined in D = 4 + n where

4 large dimensions - observed world

n extra dimensions - compactified and small at Planck scale ∼ 10−33cm

as of 1996, D = 10→ n = 6

Our world is truly higher-dimensional with fundamental mass scale MD

M4 is its effective value - in 4-dimensional low energy effective theory (describing world at
distance scales l � lP )

Transition between two effective theories by given renormalization group method

from S = const transition LHigh −→ LLow

~
c
·M2

4 = Mn+2
n+4 · Vn , Vn is extra volume
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ELEMENTARY INTRODUCTION Compactification and effective theories

Elementary illustration

Consider classical 5 dimensional Kaluza-Klein model with n = 1 extra dimension
compactified at circle

m is linear mass density of the ring, M is total mass of the ring →M = 2πR ·m

ρ5(x1, x2, x3, /y) = mδ(x1)δ(x2)δ(x3)

ρ4(x1, x2, x3) = Mδ(x1)δ(x2)δ(x3)

Since ρ5 = ρ4
2πR

and φ5(x1, x2, x3, /y) = φ4(x1, x2, x3) (cylindrical symmetry)

∆4φ4(x1, x2, x3) = ∆5φ5(x1, x2, x3, /y) = 4πG5ρ5 = 4π
G5

2πR
ρ4
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ELEMENTARY INTRODUCTION Compactification and effective theories

Since G5
G4

= 2π ·R ≡ lC, lC ... compactification length

~
c
M2

4 = M3
5 · lC

In D = 4 + n dimensions
Gn+4

G4
= lnC :

~
c
M2

4 = Mn+2
n+4 · lnC

l n+2
Pn+4

= l2P · l
n
C

Point-like mass

for r � lC : 4 + n-dimensional gravity with G4+n

for r � lC : 4-dimensional effective gravity with G4 =
G4+n

ln
C
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ELEMENTARY INTRODUCTION Kaluza-Klein particles

Kaluza-Klein particles

How to detect extra dimensions?

1 Classical level : measuring deviation from classical force laws ∼ r−2 :
lC < 10−15cm electromagnetism
lC < 0.1 mm! gravity

2 Quantum level : extra dimensions can be detected through Kaluza-Klein particles

Example : 5-dimensional scalar field L5 = − 1
2
(∂AΦ)(∂AΦ)→ L4, A = 0...4

Φ(xµ, y) = Φ(xµ, y + 2πR)

Φ(xµ, y) =
∑∞

n=−∞ φn(xµ)e
iny
R , (φ∗n = φ−n)

L5 = −
1

2

∞∑
n,m=−∞

[(∂µφn)(∂µφm)−
n ·m
R2

φmφn]e
i(n+m)y

R
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ELEMENTARY INTRODUCTION Kaluza-Klein particles

Kaluza-Klein particles

Transition L5 −→ L4 (for scales > 2πR = lC):

Since S =
∫

dx5L5 =
∫

dx4L4 :

L4 =

∫ 2πR

0
dyL5 = −

2πR

2

∞∑
n=−∞

[(∂µφn)(∂µφ∗n) +
n2

R2
φnφ∗n]

Normalisation ϕn =
√

2πRφn :

L4 = −
1

2
(∂µϕ0)(∂µϕ0)−

∞∑
n=1

[(∂µϕn)(∂µϕ∗n) +
n2

R2
φnφ∗n]

zero mode ϕ0

Spectrum of KK massive modes ϕn with masses mn = ~
c

2πn
lC

Similarly for electromagnetism Aµ and gravity hµν : mn = n
VC
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ELEMENTARY INTRODUCTION D-dim Kaluza-Klein flat model - SUMMARY

D-dim Kaluza-Klein flat model - SUMMARY

1 D = 4 + n, ”n” flat dimensions compactified to circle

2 All interactions are truly D-dimensional

3 At low energies r > lC all interactions effectively 4-dimensional with spectrum of KK

particles with mk ∼ k
Vn

4 Today’s estimation on lC : no KK particles observed on 100 GeV , i.e.
lC < 10−15cm, n = 1

5 In string theories D = 10, lC at Planck scale
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BRANE MODELS WITH LARGE EXTRA DIMENSIONS

BRANE MODELS WITH LARGE EXTRA DIMENSIONS
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BRANE MODELS WITH LARGE EXTRA DIMENSIONS Branes and Hořava-Witten mechanism (1996)

Branes and Hořava-Witten mechanism (1996)

Branes in string theory, Polchinski (1995)

M-theory in 11 dimensions, Hořava-Witten (1996)

10-branes as edges of 11-dimensional bulk
Gravity propagates in the bulk
Standard Model confined to the brane
6 space dimensions compacified and small, 11th not necessary

Effectively 4-dimensional SM , 5-dimensional gravity
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BRANE MODELS WITH LARGE EXTRA DIMENSIONS ADD flat brane model (1998)

ADD flat brane model (1998)

Arkani-Hamed, Dimopoulos, Dvali (1998)

Model a la Kaluza-Klein + SM on a brane

gravity experimentally proven at ∼ 0.1 mm, (32 orders from Planck scale!)

absence of Standard Model KK particles

Hierarchy problem :

if M2
4 = Mn+2

n+4 · l
n
C , Mn+4 = mHiggs ∼ 1 TeV , then lC = 1032/n−17cm

if D = 5 lC = 1015cm
if D = 6 lC = 0.1 mm

Note : if SM is n + 4 dimensional lC < 10−15cm, D ≥ 20

Hierarchy problem can be reformulated in terms of large extra dimensions ∼ 0.1 mm
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BRANE MODELS WITH LARGE EXTRA DIMENSIONS Randall-Sundrum warped brane models (1999)

Randall-Sundrum warped brane models (1999)

RSI addresses hierarchy problem

RSII shows that there can be infinite extra dimensions and not observed

Extra dimension is warped

Metric in Gaussian coordinates :

ds2 = e−
|y|
l ηµνdxµdxν + dy2

Minkowski brane is an edge of the AdS5 bulk : Z2-symmetry y → −y
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BRANE MODELS WITH LARGE EXTRA DIMENSIONS Randall-Sundrum warped brane models (1999)

Randall-Sundrum warped brane models (1999)

Einstein equations

G
(5)
AB = κ5 T

(5)
AB = −Λ g

(5)
AB + diag(σ,−σ,−σ,−σ, 0) δ(4)(y)

Z2-symmetry y → −y

Three parameters : brane tension σ > 0, Λ < 0, l are not independent :

Λ = −κ2
5
6

σ2 = − 6
l2

Potential of a small point mass m on the brane in effective 4-dimensional theory

1 V (r) ∼ h00 = 2mG4
r

(1 + 2l2

3r2 ), for r � l

2 M2
4 = M3

5 · l, l is effective compactification length

3 l < 0.1mm
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BRANE MODELS WITH LARGE EXTRA DIMENSIONS Models with large extra dimensions : SUMMARY

Models with large extra dimensions : SUMMARY

1 Gravity is D-dimensional, fundamental scale is MD

2 Standard model 4-dimensional

3 Possibility to solve hierarchy problem by large extra dimensions

4 Large extra dimensions

flat (ADD) lC ∼ 0.1 mm

warped (RS) lC →∞
”next door”, experimentally accessible

1 measuring classical force law
2 searching for KK particles (LHC)

5 Brane cosmologies are cosmological generalisations of RS model

6 Effectively General Relativity :
Our world is a 4-dimensional surface in a 5-dimensional bulk
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BRANE-WORLD COSMOLOGICAL MODELS

BRANE-WORLD COSMOLOGICAL MODELS
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BRANE-WORLD COSMOLOGICAL MODELS Thin shell formalism in General Relativity

Thin shell formalism in General Relativity

Israel (1967)

+-
n

eµ A=0...4
µ=0...3

5gAB

4gµν TAB
5

Σ

Gaussian coordinates :

g
(5)
yν = 0 ; g

(5)
yy = (n.n) ; g

(5)
µν = g

(4)
µν ; nα = δy

α

Kµν = − 1
2
∂y(g

(4)
µν )

”4 + 1” decomposition of Einstein tensor (Gauss-Codazzi)

(5)Gµ
ν = (4)Gµ

ν + ∂
∂y

(Kµ
ν − δµ

ν K)−K Kµ
ν + 1

2
δµ

ν(Tr(K2)−K2); K ≡ Kα
α
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BRANE-WORLD COSMOLOGICAL MODELS Thin shell formalism in General Relativity

Thin shell formalism in General Relativity

Einstein equations
(5)Gµ

ν = (4)Gµ
ν + ∂

∂y
(Kµ

ν − δµ
ν K) + . . . = κ5

(5)T µ
ν , / limε→0

∫ ε
−ε d y

τµ
ν = limε→0[

∫ ε
−ε

(5)T µ
νd y]

Israel junction conditions

[Kµ
ν − δµ

ν K]+− = κ5 τµ
ν

τ ∼ 2 ·K+ τ ∼ K+ −K−
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BRANE-WORLD COSMOLOGICAL MODELS Z2 Symmetric (Brane) Models

Z2 Symmetric (Brane) Models

Brane cosmologies

generalisation of RS model adding cosmological evolution of the brane

M4 brane → FRW

Einstein equations

G
(5)
AB = κ5 T

(5)
AB = −Λ g

(5)
AB + diag(σ + ρ(t),−σ + p(t),−σ + p(t),−σ + p(t), 0) δ(4)(y)

Z2-symmetry y → −y

5-dimensional solution with FRW-slicing imposed is necessary
Schwarzschild-anti-de-Sitter

ds2 = −F (r) dt2 + dr2

F (r)
+ r2[dχ2 + f2

k (χ)(dθ2 + sin2 θ dφ2)]

F (r) ≡ k − Λ
6

r2 − M
r2

brane - spherically symmetric surface moving at r = a(τ)
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BRANE-WORLD COSMOLOGICAL MODELS Z2 Symmetric (Brane) Models

Z2 Symmetric (Brane) Models

Bulk solution S −AdS5 : M,Λ

Matching the metric on the brane r = a(τ), t = t(τ) :

ds2
Σ = −dτ2[F (a)ṫ2 − F−1(a)ȧ2] + a2dΣ2

k

FRW on the brane, τ is proper time

ds2
Σ = −dτ2 + a2dΣ2

k

ṫ = F−1(a)
√

F (a) + ȧ2

tangent and normal vectors

eA
τ = (ṫ, ȧ, 0, 0, 0), eA

i = δA
i , nA = (−ȧ, ṫ, 0, 0, 0)
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BRANE-WORLD COSMOLOGICAL MODELS Z2 Symmetric (Brane) Models

Z2 Symmetric (Brane) Models

extrinsic curvature

Kµν = −eA
µeB

ν∇AnB

Kχ
χ = Kθ

θ = Kφ
φ =

√
h2 + k

a2 − Λ
6
− M

a4

Z2-symmetric Israel junction conditions

2 · [Kµ
ν − δµ

ν K] = κ5 τµ
ν = diag(−σ − ρ,−σ + p,−σ + p,−σ + p)

1.Conservation equation

ρ̇ + 3h(ρ + p) = 0

2.Friedmann-like equation

h2 + k
a2 = [

κ2
5

36
σ2 + Λ

6
] +

κ2
5σ

18
ρ[1 + ρ

2σ
] + M

a4

1 h2 + k
a2 ∼ (ρ + σ)2, unconventional cosmology

2 α ≡ κ2
5

36 σ2 + Λ
6 , effective cosmological constant. RS type model α = 0

3 8πG
3 =

κ2
5σ

18 =
κ5
3·l , G is Newton’s constant

4 M
a4 is effective radiation (dark radiation)
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BRANE-WORLD COSMOLOGICAL MODELS Simplest Realistic Brane Cosmology

Simplest Realistic Brane Cosmology

Simplest explicit cosmological solution for M = 0, k = 0, i.e. bulk is AdS5

h2 = α + 8πG
3

ρ[1 + ρ
2σ

]

Consider an equation of state p = wρ, w = 0 (dust), w = 1/3 (radiation)

ρ̇ + 3h(ρ + p) = 0⇒ ρ = ρ0a−q , q ≡ 3(1 + w)

Substituting X(τ) = aq(τ), Friedmann-like equation can be written as

Ẋ
q

=
√

αX2 + βX + ξ, β ≡ 8πGρ0
3

, ξ ≡ 8πGρ2
0

6σ

Solutions

aq = q2

4
βτ2 + q

√
ξτ (α = 0)

aq =
√

ξ
α

sinh
(
q
√

ατ
)

+ β
2α

[
cosh

(
q
√

ατ
)
− 1

]
(α > 0)

aq =
√

ξ
−α

sin
(
q
√

ατ
)

+ β
2α

[
cos

(
q
√

ατ
)
− 1

]
(α < 0)
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BRANE-WORLD COSMOLOGICAL MODELS Simplest Realistic Brane Cosmology

Simplest Realistic Brane Cosmology

Case α = 0
Solution in terms of effective compactification length of AdS5, Λ = − 6

l2

a(τ) ∝ τ
1
q (1 + q

2l
τ)

1
q

Asymptotics

1 around big bang a ∼ τ1/q

2 late times a ∼ τ2/q , k = 0 FRW behaviour
3 transition time ∼ l/c, constraints

experiment l < 0.1 mm → τ < 10−13s !, M5 > 108GeV

nucleosynthesis τ ∼ 100 s, OK
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BRANE-WORLD COSMOLOGICAL MODELS Z2 Asymmetric (Shell) Models

Z2 Asymmetric (Shell) Models

Inner bulk solution S −AdS5 : M−,L− ≡
Λ−
6

Inner bulk solution S −AdS5 : M+,L+ ≡
Λ+
6

extrinsic curvature

K±
µν = −[eA

µeB
ν∇AnB ]±

K+ χ
χ = K+ θ

θ = K+ φ
φ =

√
h2 + k

a2 − L+ −
M+
a4

K−χ
χ = K− θ

θ = K−φ
φ =

√
h2 + k

a2 − L− −
M−
a4

Asymmetric Israel junction conditions

[Kµ
ν − δµ

ν K]+− = κ5 τµ
ν = diag(−σ − ρ,−σ + p,−σ + p,−σ + p)
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BRANE-WORLD COSMOLOGICAL MODELS Z2 Asymmetric (Shell) Models

Z2 Asymmetric (Shell) Models

1.Conservation equation

ρ̇ + 3h(ρ + p) = 0

2.Friedmann-like equation

h2 + k
a2 =

κ2
5(ρ+σ)2

36
+ L

2
+ 9L̂2

4κ2
5(ρ+σ)2

+ 1
a4 [M

2
+ 9

2
M̂L̂

κ2
5(ρ+σ)2

] + 1
a8 [ 9M̂2

κ2
5(ρ+σ)2

]

M ≡ M+ + M−, M̂ ≡ M+ −M−
L ≡ L+ + L−, L̂ ≡ L+ − L−

h2 + k
a2 ∼ (ρ + σ)2 + 1

(ρ+σ)2
, very unconventional cosmology

? realistic cosmology - FRW at late times ?
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BRANE-WORLD COSMOLOGICAL MODELS Simplest Realistic Shell Cosmology

Simplest Realistic Shell Cosmology

Simplest explicit cosmological solution for M = 0, k = 0, i.e. bulk is AdS5

h2 =
κ2
5(ρ+σ)2

36
+ L

2
+ 9L̂2

4κ2
5(ρ+σ)2

recovering standard cosmology at late times

L− < 0, L+ < 0; choice L− < L+

fine-tuning of σ :
1 σ+ = 3

κ2
5
(
√
−L− +

√
−L+) > 0

2 σ− = − 3
κ2
5
(
√
−L− −

√
−L+) < 0

Friedmann equation at late times, ρ→ 0:

h2 = 8πG
3

ρ + O(ρ2)

8πG
3 =

2κ5
3

√
L+L−√

−L−±
√
−L+

, G is Newton’s constant
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BRANE-WORLD COSMOLOGICAL MODELS Simplest Realistic Shell Cosmology

Simplest Realistic Shell Cosmology

Complete scale factor evolution for p = wρ in parametric form :

a(y) = y−1/q

τ+(y) = 6
qκ5|σ+|

∫∞
y

(1+z)dz

z3/2
√

(2+z)(2z+z2+γ+)
y ∈ (0,∞)

τ−(y) = 6
qκ5|σ−|

∫ 1
y

(1−z)dz

z3/2
√

(2−z)(2z−z2+γ−)
y ∈ (0, 1)

where γ± ≡ 36
κ2
5σ2

±

√
L+L−

Asymptotic

big bang τ± → 0 , 1.: a ∼ τ
1/q
+ , 2.: a ∼ abb(1 + 1

q

√
τ−
d

), R→∞

late times τ± →∞, a ∼ τ
2/q
± FRW
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BRANE-WORLD COSMOLOGICAL MODELS Brane cosmologies : SUMMARY

Brane cosmologies : SUMMARY

1 Large extra dimensions possible : good motivation in high energy physics

2 Effectively General Relativity : our world is a 4-dimensional surface in a
4 + n-dimensional bulk

3 Cosmologies Z2-symmetric and asymmetric
FRW et late times
Modifications at very early times (modified primordial cosmology)

4 Today
Theory : string phenomenology : brane inflation, black holes,
Einstein-Gauss-Bonnet branes etc.
Experiment : searching for extra dimensions (LHC)

5 Brane perturbations analysis (CBR anisotropies, etc.)
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